Explanation :
$T=10,000+1000\;\sin\theta-1200\;\cos\;2\theta$
its a function of $2\theta$ ,so $2\theta$=360, $\theta$=180$\textdegree$
$T=_o\int^\mathrm\pi10,000+1000\;\sin\theta-1200\;\cos\;2\theta$
=${\left[10,000\;\theta-1000\;\cos\;\theta-\frac{1200}2\sin\;2\theta\right]^\mathrm\pi}_0$
=$\left(10,000\;\mathrm\pi+1000-0\right)-(0-1000-0)$
=$10,000\;\mathrm\pi\;\;\mathrm N\cdot\mathrm m$
Now, T=$T_{mean}\times\mathrm\pi$
so, $T_{mean}=10,000\;N\cdot m$
$w=2\mathrm{πN}/60=2\mathrm\pi\times100/60=10.4719\;\mathrm{rad}/\sec\;.$
$\mathrm P={\mathrm T}_\mathrm{mean}\times\mathrm w$
= 104.719 KW