Questions & Answers of Impulse and Momentum (Linear and Angular) and Energy Formulations, Collisions

A point mass having mass M is moving with a velocity V at an angle $\theta$to the wall as shown in the figure. The mass undergoes a perfectly elastic collision with the smooth wall and rebounds. The total change (final minus initial) in the momentum of the mass is


A mass of 2000 kg is currently being lowered at a velocity of 2 m/s from the drum as shown in the figure. The mass moment of inertia of the drum is $150\mathrm{kg}-\mathrm m^2$. On applying the brake, the mass is brought to rest in a distance of 0.5 m. The energy absorbed by the brake (in kJ) is __________


A ball of mass 0.1 kg, initially at rest, is dropped from height of 1 m. Ball hits the ground and bounces off the ground. Upon impact with the ground, the velocity reduces by 20% . The height (in m) to which the ball will rise is _____.

A small ball of mass 1 kg moving with a velocity of 12 m/s undergoes a direct central impact with a stationary ball of mass 2 kg. The impact is perfectly elastic. The speed (in m/s) of 2 kg mass ball after the impact will be____.

A mass m1 of 100 kg travelling with a uniform velocity of 5 m/s along a line collides with a stationary mass m2 of 1000 kg. After the collision, both the masses travel together with the same velocity. The coefficient of restitution is

The coefficient of restitution of a perfectly plastic impact is

A stone with mass of 0.1 kg is catapulted as shown in the figure. The total force Fx (in N) exerted by the rubber band as a function of distance x (in m) is given by Fx = 300x2. If the stone is displaced by 0.1m from the un-stretched position (x = 0) of the rubber band, the energy stored in the rubber band is

During inelastic collision of two particles, which one of the following is conserved?