Questions & Answers of Liner Time Invariant and Causal Systems

Question No. 18

Consider a continuous-time system with input xt and output yt given by

yt=xtcost

This system is

Question No. 41

Consider the following state-space representation of a linear time-invariant system.

$\overset.x\left(t\right)=\begin{bmatrix}1&0\\0&2\end{bmatrix}x\left(t\right),y\left(t\right)=c^Tx\left(t\right),\;c=\begin{bmatrix}1\\1\end{bmatrix}\;\mathrm{and}\;x\left(0\right)=\begin{bmatrix}1\\1\end{bmatrix}$

The value of yt for t=loge2 is __________.

Question No. 45

The output of a continuous-time, linear time-invariant system is denoted by T{x(t)} where xt is the input signal. A signal zt is called eigen-signal of the system T , when T{z(t)}= y z(t), where γ is a complex number, in general, and is called an eigenvalue of T. Suppose the impulse response of the system T is real and even. Which of the following statements is TRUE

Question No. 19

A moving average function is given by $y\left(t\right)=\;\frac1T\int\limits_{t-T}^tu\left(\zeta\right)\operatorname d\zeta$. If the input u is a sinusoidal signal of frequency 12THz, then in steady state, the output y will lag u (in degree) by ________.

Question No. 20

The impulse response g(t) of a system, G, is as shown in Figure (a). What is the maximum value attained by the impulse response of two cascaded blocks of G as shown in Figure(b)?

Question No. 144

For linear time invariant systems, that are Bounded Input Bounded stable, which one of the following statement is TRUE?

Question No. 162

The following discrete-time equations result from the numerical integration of the differential equations of an un-damped simple harmonic oscillator with state variables x and y. The integrationtime step is h.
xk+1-xkh=yk
yk+1-ykh=-xk
For this discrete-time system, which one of the following statements is TRUE?

Question No. 19

xt is nonzero only for Tx<t<T'x , and similarly, yt is nonzero only for Ty<t<T'y. Let z(t) be convolution of x(t) and y(t). Which one of the following statements is TRUE?

Question No. 119

Consider an LTI system with transfer function

HS=1ss+4

If the input to the system is cos3t and the steady state output is Asin3t+α, then the value of A is

Question No. 120

Consider an LTI system with impulse response ht=e-5tut. If the output of the system is yt=e-3tut-e-5tut then the input, xt, is given by

Question No. 5

Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system?

Question No. 31

Let y[n] denote the convolution of h[n] and g[n], where h[n]=(1/2)n u[n] and g[n] is a causal sequence. If y[0] = 1 and y[1] = 1/2, then g[1] equals

Question No. 44

The input x(t) and output y(t) of a system are related as yt=-t xτcos3τdτ.The system is

Question No. 17

Given two continuous time signals x(i)=e-t and y(i)=e-2t which exist for t>0, the convolution z(t)=x(t)*y(t) is

Question No. 4

The system represented by the input-output relationship $\style{font-size:14px}{y\left(t\right)=\int\limits_{-\infty}^{5t}x\left(\tau\right)d\tau,t>0}$ is

Question No. 32

Given the finite length input x[n] and the corresponding finite length output y[n] of an LTI system as shown below, the impulse response h[n] of the system is

Question No. 11

A Linear Time Invariant system with an impulse response h(t) produces output y(t) when input x(t) is applied. When the input x(t-τ) is applied to a system with impulse response h(t-τ), the output will be

Question No. 35

A cascade of 3 Linear Time Invariant systems is causal and unstable. From this, we conclude that

Question No. 3

A signal e-αtsinωt is the input to a real Linear Time Invariant system. Given K and $\phi$ are constants, the output of the system will be of the form $\style{font-size:18px}{Ke^{-\beta t}\sin\left(\nu t+\phi\right)}$ where

Question No. 19

The impulse response of a causal linear time-invariant system is given as h(t) . Now consider the following two statements :
Statement (I): Principle of superposition holds
Statement (II):h(t)=0 for t<0
Which one of the following statements is correct ?

Question No. 29

A system with x(t) and output y(t) is defined by the input-output relation :

$y\left(t\right)=\int\limits_{-\infty}^{-2t}x\left(t\right)d\tau$

The system will be

Question No. 30

A signal xt=sincαt where α  is a real constant sincx=sinπxπx is the input to a Linear Time Invariant system whose impulse response h(t)=sin(βt),where β is a real constant. If minα,βdenotes the minimum of α and β and similarly,maxα,β denotes the maximum of α and β, and K is a constant, which one of the following statements is true about the output of the system ?

Question No. 9

Let a signal $a_1\sin\left(\omega_1t+\phi_1\right)$ be applied to a stable linear time invariant system. Let the corresponding steady state output be represented as $a_2F\left(\omega_2t+\phi_2\right)$. Then which of the following statement is true?

Question No. 51

If u(t), r(t) denote the unit step and unit ramp functions respectively and u(t)*r(t) their convolution, then the function u(t+1)*r(t-2) is given by