GATE Papers >> EEE >> 2019 >> Question No 38

Question No. 38 EEE | GATE 2019

A periodic function $ f(t) $, with a period of $ 2\pi $, is represented as its Fourier series,

$ f(t)=a_0+{\textstyle\sum_{n=1}^\infty}\;a_n\;\cos nt\;+{\textstyle\sum_{n=1}^\infty}\;b_n\sin\;nt. $

If

$ f(t)=\left\{\begin{array}{lc}A\;\sin\;t,&0\;\leq\;t\;\pi\\0,&\;\;\;\;\;\pi\;<\;t\;<\;2\pi\end{array},\right. $

the Fourier series coefficients $ a_1 $ and $ b_1 $ of $ f(t) $ are


Answer : (D) $ a_1=0;\;b_1=\frac A2 $


Solution of Question No 38 of GATE 2019 EEE Paper

As per the given description of f(t), if we draw its waveform, if looks like

→ One way to obtain its C.T.T.S is by obtaining its odd and even part and then by obtaining their individual C.T.F.S and finally we can add them to get complete C.T.F.S of f(t). However in this case we can pick the correct option by eliminating others.

$ \mathrm f(\mathrm t)={\mathrm f}_{\mathrm o}(\mathrm t)1+\mathrm{fe}(\mathrm t)=\left[\frac{\mathrm f(\mathrm t)-\mathrm f(-\mathrm t)}2\right]+\left[\frac{\mathrm f(\mathrm t)+\mathrm f(-\mathrm t)}2\right] $

$ {\mathrm f}_{\mathrm o}(\mathrm t)=\left[\frac{\mathrm A}2{\mathrm{sinω}}_{\mathrm o}\mathrm t\right]+\sum\limits_{\mathrm n=1}^{\mathrm N}{\mathrm a}_{\mathrm n}{\mathrm{cosω}}_{\mathrm o}\mathrm t $

From this $ {\mathrm b}_1=\frac{\mathrm A}2, $  So only option D satisfy this.

Comments
gd06xe http://pills2sale.com/ levitra nizagara

Posted on  18/10/2020 15:33:27  by  dobsonz
PzDLRZ https://www.quora.com/What-the-top-SEO-keywords-for-essay-you-know/answer/Alan-Smith-1772 write my essay

Posted on  04/12/2020 02:53:37  by  dobson
RY53Nq http://xnxx.in.net/ xnxx videos

Posted on  13/12/2020 00:14:47  by  johnan
L6jHuO https://writemyessayforme.web.fc2.com/

Posted on  13/12/2020 05:34:28  by  dobson
kYuRK5 https://writemyessayforme.web.fc2.com/#writemyessay

Posted on  15/12/2020 06:34:08  by  dobson
WMXXbX https://writemyessayforme.web.fc2.com/octavio-paz-essay-day-of-the-dead.html

Posted on  09/01/2021 08:51:43  by  dobson
d0Ej1m http://waldorfdollshop.us/ waldorf doll

Posted on  09/01/2021 13:05:58  by  johnanz
SSX9tt http://nexus.cct.lsu.edu:8000/nexus_uis/930

Posted on  17/01/2021 10:09:09  by  johnanz
7JImp7 https://beeg.x.fc2.com/

Posted on  26/01/2021 13:40:53  by  markus
VZQ0fJ https://buyzudena.web.fc2.com/

Posted on  27/01/2021 12:26:04  by  markus
Leave a comment
Go