The Discrete Fourier Transform (DFT) of the 4-point sequence
$x\left[n\right]=\left\{\left[0\right],x\left[1\right],x\left[2\right],x\left[3\right]\right\}=\left\{3,2,3,4\right\}\mathrm{is}$
$X\left[k\right]=\left\{X\left[0\right],X\left[1\right],X\left[2\right],X\left[3\right]\right\}=\left\{12,2j,0-2j\right\}.$
If${X}_{1}\left[k\right]$ is the DTF of 12-point sequence ${x}_{1}\left[n\right]=\left\{3,0,0,2,0,0,3,0,0,4,0,0\right\}$
the value of $\left|\frac{{X}_{1}\left[8\right]}{{X}_{1}\left[11\right]}\right|$ is ________