# GATE Papers >> CSE >> 2019 >> Question No 20

Question No. 20

Let $G$ be an arbitrary group. Consider the following relations on $G$:

$R_1:\forall a,\;b\in G,\;a\;R_1b$ if and only if $\exists g\in G$ such that $a=g^{-1}bg$

$R_2:\forall a,\;b\in G,\;a\;R_2b$ if and only if $a=b^{-1}$

Which of the above is/are equivalence relation/relations?

##### Answer : (B) $R_1\;\mathrm{only}$

Solution of Question No 20 of GATE 2019 CSE Paper

$\mathrm R1:\forall\mathrm a,\;\mathrm b\in\mathrm G,\mathrm a\;\mathrm R^1\;\mathrm b$ if and if $\exists\mathrm g\in\mathrm G\;\mathrm{such}\;\mathrm{that}\;\mathrm a=\mathrm g^{-1}\mathrm{bg}$

Reflexive: a = g-1 ag can be satisfied by putting g = e, identify "e" always exists in a group. So reflexive

Symmetric: aRb ⇒ a = g-1 bg for some g

⇒ b = gag-1 = (g-1)-1 ag-1

g-1 Always exists for every $\mathrm g\in\mathrm G.$

So symmetric

Transitive: aRb and bRc ⇒ a = g1-1 bg1 and b = g2-1 cg2 for same g1g2 $\in$ G.

Now a $=\mathrm g_1^{-1}\mathrm g_2^{-1}{\mathrm{cg}}_2{\mathrm g}_1=\left({\mathrm g}_2{\mathrm g}_1\right)^{-1}{\mathrm{cg}}_2{\mathrm g}_1$

${\mathrm g}_1\in\mathrm G\;\mathrm{and}\;{\mathrm g}_2\in\mathrm G\Rightarrow{\mathrm g}_2{\mathrm g}_1\in\mathrm G$  since group is closed so aRb and aRb ⇒ aRc

Hence transitive

Clearly R1 is equivalence relation.

R2 is not equivalence it need not even be reflexive, aR2a ⇒ a = a-1 $\forall\mathrm a$  which not be true in a group.

R1 is equivalence relation is the correct answer.

px4Oeu http://pills2sale.com/ levitra nizagara

Posted on  18/10/2020 20:47:33  by  dobsonz

Posted on  01/11/2020 20:35:22  by  johnanx

Posted on  03/12/2020 23:19:49  by  dobson
JIy5u5 http://xnxx.in.net/ xnxx videos

Posted on  12/12/2020 23:22:52  by  johnan
rcKt80 https://writemyessayforme.web.fc2.com/

Posted on  13/12/2020 04:35:11  by  dobson
TYfAGb https://writemyessayforme.web.fc2.com/#writemyessay

Posted on  15/12/2020 05:34:32  by  dobson

Posted on  09/01/2021 08:39:47  by  dobson
hOfXQR http://waldorfdollshop.us/ waldorf doll

Posted on  09/01/2021 12:54:13  by  johnanz
G6SUiV http://nexus.cct.lsu.edu:8000/nexus_uis/930

Posted on  17/01/2021 09:54:50  by  johnanz
d9xXgf https://beeg.x.fc2.com/

Posted on  26/01/2021 13:27:42  by  markus