GATE Papers >> CSE >> 2019 >> Question No 16

Question No. 16 CSE | GATE 2019

Which one of the following is NOT a valid identity?


Answer : (B) $ (\mathrm x+\mathrm y)\oplus\mathrm z\;=\;\mathrm x\oplus(\mathrm y+\mathrm z) $


Solution of Question No 16 of GATE 2019 CSE Paper

$ \begin{array}{l}\left(\mathrm A\right)\mathrm L\;\mathrm H\;\mathrm S=\mathrm x\oplus\mathrm y\\\;\;\;\;\;\mathrm R\;\mathrm H\;\mathrm S=\left(\mathrm{xy}+\mathrm x'\mathrm y'\right)'=\left(\mathrm x\odot\mathrm y'\right)=\mathrm x\oplus\mathrm y\\\;\;\;\;\;\mathrm L\;\mathrm H\;\mathrm S=\mathrm R\;\mathrm H\;\mathrm S\Rightarrow\mathrm{true}\\\left(\mathrm B\right)\mathrm L\;\mathrm H\;\mathrm S=\mathrm x\oplus\mathrm y;\;\mathrm{condition}\;\mathrm x.\mathrm y=0;\;\mathrm R\;\mathrm H\;\mathrm S=\mathrm x+\mathrm y\end{array} $

x y L H S R H S
0 0 0 0
0 1 1 1
1 0 1 1

⇒ True

$ \begin{array}{l}\left(\mathrm C\right)\mathrm L\;\mathrm H\;\mathrm S=(\mathrm x+\mathrm y)\oplus\mathrm z\\\;\;\;\;\;\mathrm R\;\mathrm H\;\mathrm S=\mathrm x\oplus\left(\mathrm y+\mathrm z\right)\end{array} $

X y z L H S R H S
0 1 1 0 1

$ \begin{array}{l}\;\;\;\;\;\;\mathrm L\;\mathrm H\;\mathrm S\neq\mathrm R\;\mathrm H\;\mathrm S\Rightarrow\mathrm{False}\\\left(\mathrm D\right)\mathrm L\;\mathrm H\;\mathrm S=(\mathrm x\oplus\mathrm y)\oplus\mathrm z\\\;\;\;\;\;\mathrm R\;\mathrm H\;\mathrm S=\mathrm x\oplus\left(\mathrm y\oplus\mathrm z\right)\end{array} $

X y z L H S R H S
0 1 1 0 0

As associative ⇒ True

Comments
No Comments
Leave a comment